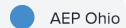
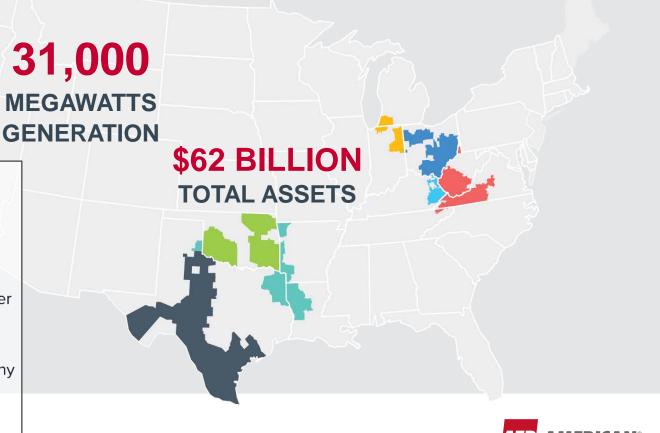
THE COAL INSTITUTE

45th Annual Summer Trade Seminar

Surviving the Perfect Storm
The Future of Coal

July 17 - 19, 2016




AEP Serves 5.4 Million Customers in 11 States

40,000 **TRANSMISSION** LINE MILES

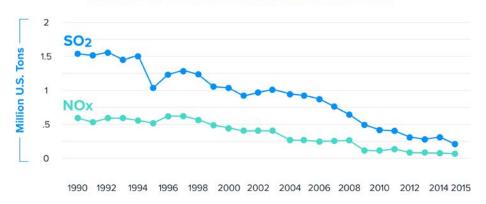
31,000 **MEGAWATTS**

- **AEP Texas**
- Appalachian Power
- Indiana Michigan Power
- Kentucky Power
- Public Service Company of Oklahoma
- Southwestern Electric **Power Company**

Fleet Transition: Diversifying the Portfolio

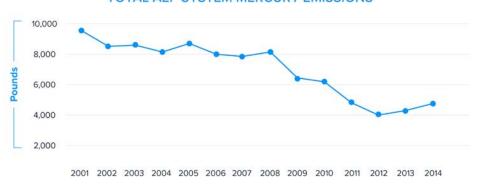
AEP'S GENERATING CAPACITY PORTFOLIO

1999 includes combined AEP and Central and South West generation assets



^{*} Includes Purchase Power Agreements

^{**} Does not represent a physical asset but avoided capacity

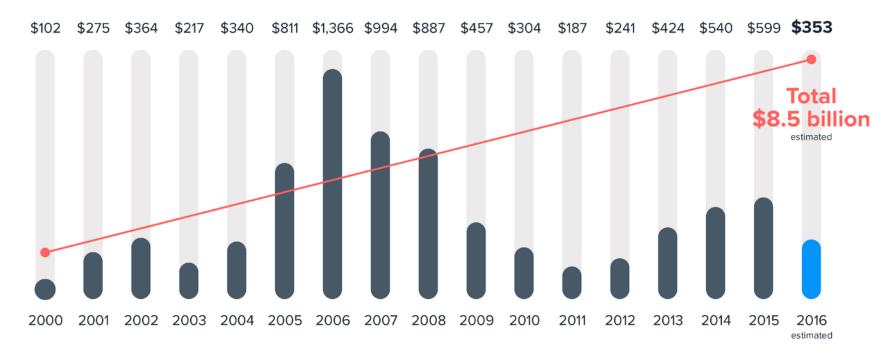

Fleet Transition: Diversifying the Portfolio

TOTAL AEP SYSTEM NOx & SO₂ EMISSIONS

Emissions down significantly over that last 25 years.

TOTAL AEP SYSTEM MERCURY EMISSIONS

Since 2000 we have reduced our CO₂ emissions by


39%

Fleet Transition: Diversifying the Portfolio

INVESTING BILLIONS TO REDUCE EMISSIONS

\$ in millions

AEP Regulated Coal Procurement 2015 Information

Purchase 39.0 million tons

51% PRB 16% CAPP 25% NAPP 7% ILB

Cook Coal Terminal 18 million ton capacity

Coal Transportation
4456 Railcars
11 Towboats
460 barges

The Perfect Storm The Future of Coal

AEP Regulated Coal Procurement

Managed Tons Purchased per Year

Year	Total Tons Burned	%PRB	%NAPP	%CAPP	%ILB
2014	47,000,000	51.5%	21.0%	21.5%	6.0%
2015	37,500,000	51.0%	24.5%	18.0%	6.5%
2016	30,900,000	46.5%	29.5%	18.0%	6.0%
2017-18	32,200,000	40.0%	33.5%	19.0%	7.5%

Why the reduction in coal burn?

Coal Plant Retirements to comply with MATS regulations

"Have you got an Environmental Impact Statement for that castle, son?"

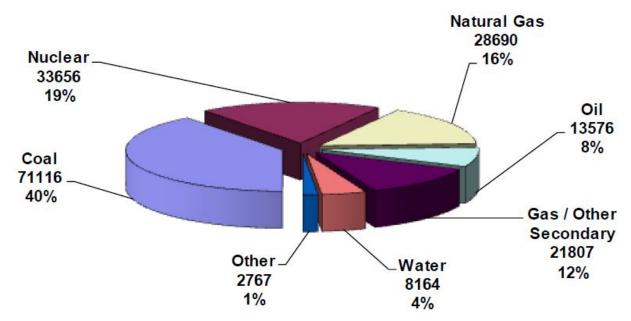
Why the reduction in coal burn? Environmental Retrofits & Retirements

Operating			Refuel or	
Company	Plant	MW	Retire	Year
APCO	Glen Lyn 5	95	Retire	2015
	Glen Lyn 6	240	Retire	2015
	Clinch River 1	235	Retire	2015
	Clinch River 2	242	Refuel	2015
	Clinch River 3	242	Refuel	2015
	Sporn 1	150	Retire	2015
	Sporn 2	150	Retire	2015
	Sporn 3	150	Retire	2015
	Sporn 4	150	Retire	2015
	Kanawha River 1	200	Retire	2015
	Kanawha River 2	200	Retire	2015
I&M	Tanners Creek 1	145	Retire	2015
	Tanners Creek 2	145	Retire	2015
	Tanners Creek 3	205	Retire	2015
	Tanners Creek 4	500	Retire	2015
КҮРСО	Big Sandy 1	278	Refuel	2015
	Big Sandy 2	800	Retire	2015
SWEPCO	Welsh 2	528	Retire	2016
PSO	Northeastern 4	470	Retire	2016
Total Coal	Capacity - Retired or F	Refueled	5,125	MW

Remaining
Managed
Coal Fired
Generation
= 14,114 MW

Why the reduction in coal burn?

Natural
Gas
Prices

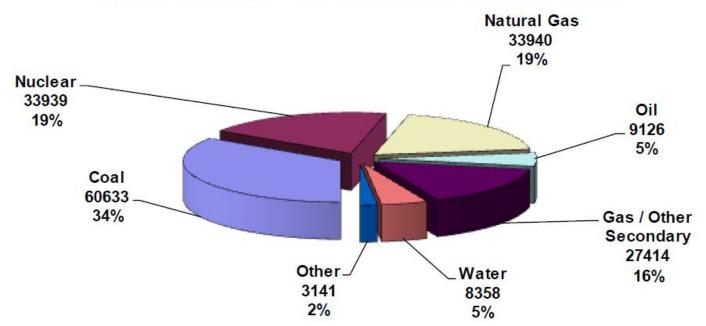


PJM 2014 Generation Capacity By Fuel Type

PJM RTO

(MidAtlantic, AP, ComEd, AEP, Dayton, Duquesne, Dominion, ATSI, DukeOK & EKPC Regions)

Capacity By Fuel Type -- 179,775 MW installed generation capacity



PJM 2016 Generation Capacity By Fuel Type

PJM RTO

(MidAtlantic, AP, ComEd, AEP, Dayton, Duquesne, Dominion, ATSI, DukeOK & EKPC Regions)

Capacity By Fuel Type -- 176,551 MW installed generation capacity

Why the reduction in Coal Burn? Types of Generation in PJM

Types of Generation

- 1. Real Base load nuclear, hydro
- 2. Non-dispatchable wind, solar
- 3. Dispatchable base load coal, CC natural gas
- 4. Peaking natural gas CT's, oil

Why the reduction in Coal Burn? APCo Example - Mountaineer and Amos

Amos Plant - 2900 MW

Mountaineer Plant – 1300 MW

The Perfect Storm The Future of Coal

Coal Burn at Appalachian Power							
	Mountaineer and Amos plants						
Quarter	Tons Burned	Gas \$/MMBtu					
Q1, 2015	2,911,634	\$2.79					
Q2, 2015	2,307,826	\$2.67					
Q3, 2015	2,259,393	\$2.72					
Q4, 2015	1,275,787	\$2.09					
Q1, 2016	2,067,486	\$1.93					
Q2, 2016	2,222,947	\$2.08					

Coal Vs Natural Gas

Comparison of Generation Cost between Coal and Natural Gas

Coal plants equipped with Srubbers, SCR's and ACI

			Coui p	iants equ	ippea wit	<u> </u>	13, 3611 3 6	and Aci			
			Deliver	ed Coal Pri	ce costs		Plant C	osts - Coal	Handling,	O&M and	Emissions
Plant Type	Fuel Type	Coal Price	Transport	\$/MMBtu	Heat Rate	\$/MWhr	Handling	Chemicals	O&M	Emissions	Total \$/MWhr
Coal Plar	nts	\$/ton									
Super-critical	CAPP barge	\$44.00	\$6.00	\$2.08	10,200	\$21.25	\$1.25	\$0.95	\$1.75	\$0.05	\$25.25
	NAPP	\$33.05	\$6.00	\$1.63	10,200	\$16.60	\$1.25	\$1.75	\$1.75	\$0.10	\$21.45
	PRB	\$11.00	\$25.00	\$2.05	10,200	\$20.86	\$1.00	\$0.25	\$1.00	\$0.02	\$23.13
Ultra-Super	PRB	\$11.00	\$25.00	\$2.05	8,200	\$16.77	\$1.00	\$0.25	\$0.75	\$0.01	\$18.78
Natural (Gas	\$/MMBtu									
Combined Cy	cle	\$2.50	\$0.00	\$2.50	7,500	\$18.75	\$0.00	\$0.00	\$0.25	\$0.00	\$19.00
Refuel - Stear	m	\$2.50	\$0.00	\$2.50	10,000	\$25.00	\$0.00	\$0.00	\$0.15	\$0.00	\$25.15
Combustion T	urbine	\$2.50	\$0.00	\$2.50	11,500	\$28.75	\$0.00	\$0.00	\$0.50	\$0.00	\$29.25

Profitable Coal Vs Natural Gas

Comparison of Generation Cost between Coal and Natural Gas

Coal plants equipped with Srubbers, SCR's and ACI

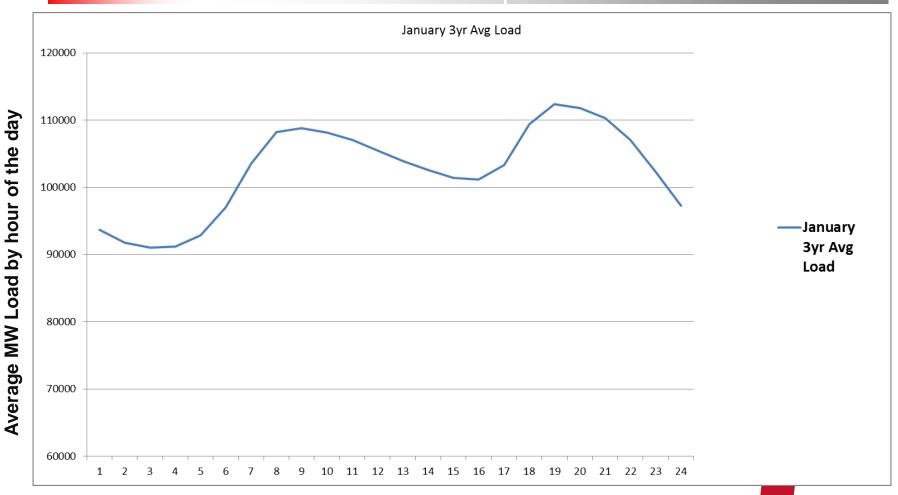
			•	-	ipped wit		·				
			Delivered Coal Price costs			Plant Costs - Coal Handling, O&M and Emissions					
Plant Type	Fuel Type	Coal Price	Transport	\$/MMBtu	Heat Rate	\$/MWhr	Handling	Chemicals	O&M	Emissions	Total \$/MWhr
Coal Plar	nts	\$/ton									
Super-critical	CAPP barge	\$55.00	\$6.00	\$2.54	10,200	\$25.93	\$1.25	\$0.95	\$1.75	\$0.05	\$29.93
	NAPP	\$40.00	\$6.00	\$1.92	10,200	\$19.55	\$1.25	\$1.75	\$1.75	\$0.10	\$24.40
	PRB	\$12.50	\$25.00	\$2.13	10,200	\$21.73	\$1.00	\$0.25	\$1.00	\$0.02	\$24.00
Ultra-Super	PRB	\$12.50	\$25.00	\$2.13	8,200	\$17.47	\$1.00	\$0.25	\$0.75	\$0.01	\$19.48
Natural (Gas	\$/MMBtu									
Combined Cy	cle	\$3.50	\$0.00	\$3.50	7,500	\$26.25	\$0.00	\$0.00	\$0.25	\$0.00	\$26.50
Refuel - Stear	n	\$3.50	\$0.00	\$3.50	10,000	\$35.00	\$0.00	\$0.00	\$0.15	\$0.00	\$35.15
Combustion T	urbine	\$3.50	\$0.00	\$3.50	11,500	\$40.25	\$0.00	\$0.00	\$0.50	\$0.00	\$40.75

Why the reduction in coal burn?

Renewables

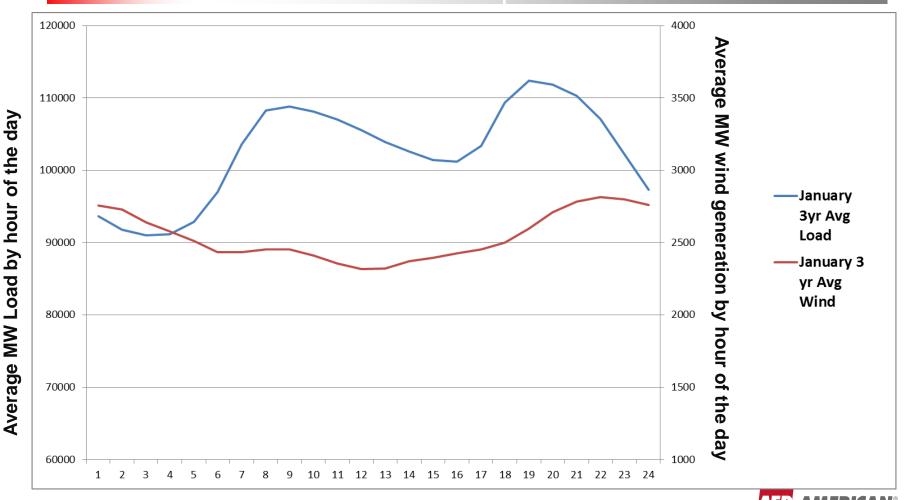
PJM Top Ten summer & winter peak days

Top 10 Summer Peak Day

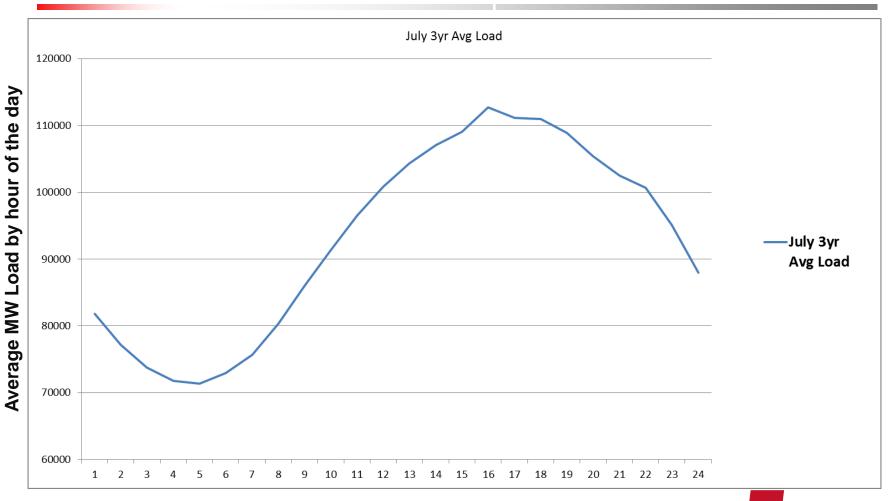

Rank	Date	Load MWh
1	7/21/2011	158,043
2	7/18/2013	157,509
3	7/19/2013	156,077
4	7/17/2012	154,339
5	7/17/2013	154,044
6	7/18/2012	152,758
7	7/6/2012	151,966
8	7/16/2013	151,421
9	7/22/2011	151,366
10	7/15/2013	150,315

Top 10 Winter Peak Days

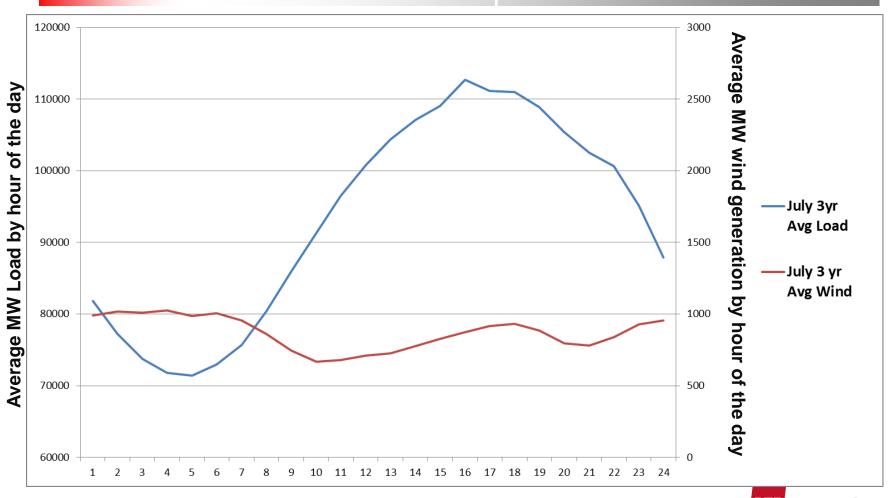
Rank	Date	Load MWh
1	2/20/2015	143,086
2	1/7/2014	140,510
3	2/19/2015	140,344
4	1/28/2014	137,336
5	1/24/2014	136,982
6	1/30/2014	136,215
7	1/8/2015	136,185
8	1/29/2014	136,020
9	1/7/2015	135,649
10	1/22/2014	135,061



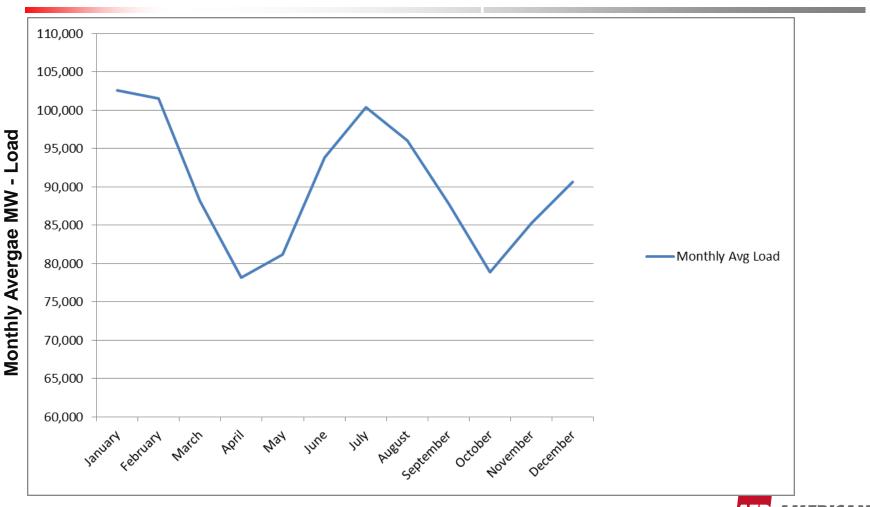
PJM Average January Hourly Load Profile


AEP AMERICAN° ELECTRIC POWER

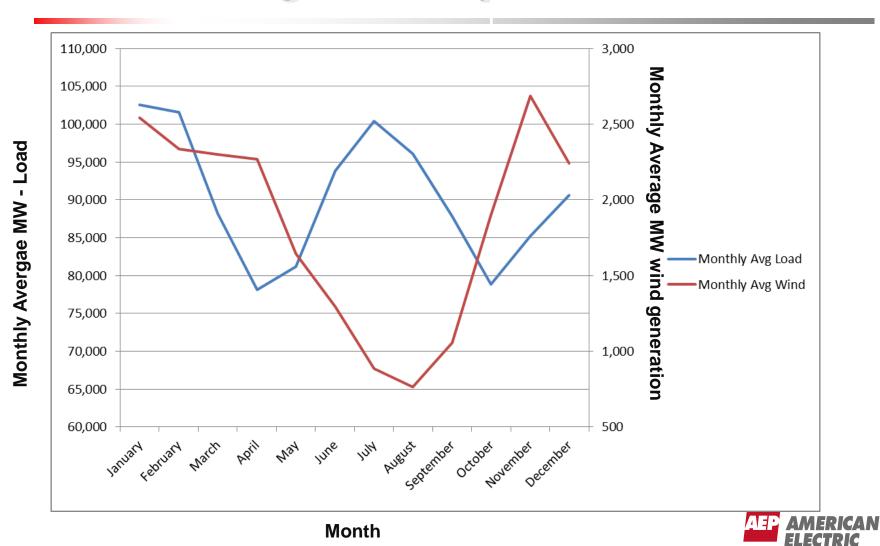
PJM Average January Hourly Load Profile Vs PJM Average July Wind Generation



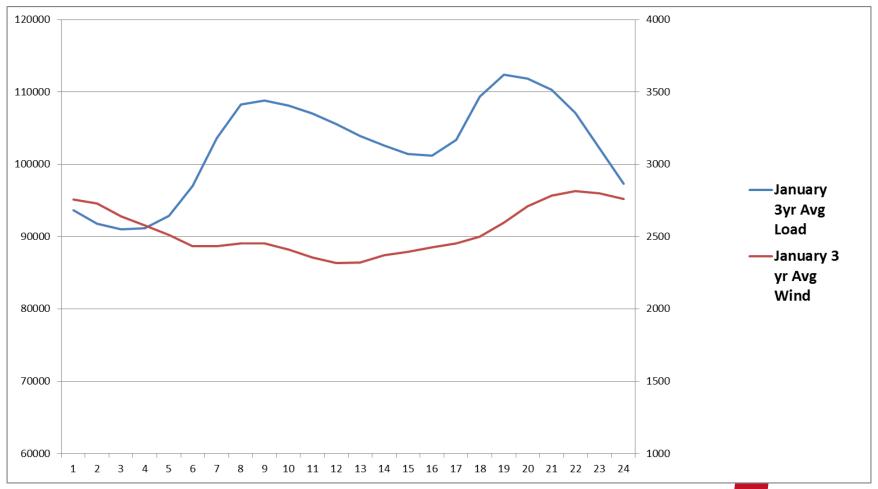
PJM Average July Hourly Load Profile



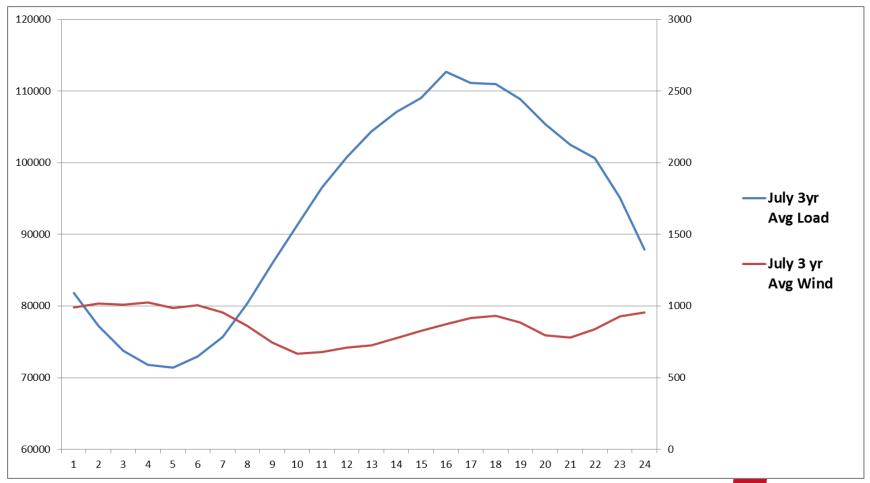
PJM Average July Hourly Load Profile Vs PJM Average July Wind Generation

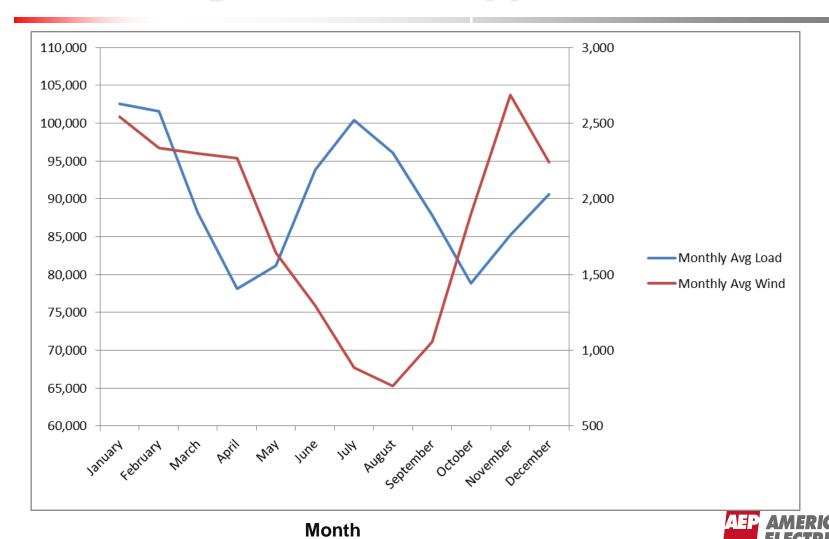


PJM Average Monthly Load Profile


AEP AMERICAN® ELECTRIC POWER

PJM Average Monthly Load Profile Vs PJM Average Monthly Wind Generation





The Future of Coal

What needs to happen for a turnaround in coal?

- 1. Natural Gas above \$3.50/MMBtu
- 2. Renewable subsidies to go away
- 3. Clean Power Plan to get thrown out
- 4. To have Elvis, Michael Jackson and Big Foot all come out in support of base load coal fired generation.

Questions?

